(72x^3-110x-18)/(12x+2)

Simple and best practice solution for (72x^3-110x-18)/(12x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (72x^3-110x-18)/(12x+2) equation:


D( x )

12*x+2 = 0

12*x+2 = 0

12*x+2 = 0

12*x+2 = 0 // - 2

12*x = -2 // : 12

x = -2/12

x = -1/6

x in (-oo:-1/6) U (-1/6:+oo)

(72*x^3-(110*x)-18)/(12*x+2) = 0

(72*x^3-110*x-18)/(12*x+2) = 0

72*x^3-110*x-18 = 0

2*(36*x^3-55*x-9) = 0

36*x^3-55*x-9 = 0

{ 1, -1, 3, -3, 9, -9 }

1

x = 1

36*x^3-55*x-9 = -28

1

-1

x = -1

36*x^3-55*x-9 = 10

-1

3

x = 3

36*x^3-55*x-9 = 798

3

-3

x = -3

36*x^3-55*x-9 = -816

-3

9

x = 9

36*x^3-55*x-9 = 25740

9

-9

x = -9

36*x^3-55*x-9 = -25758

-9

{ 1/2, -1/2, 1/3, -1/3, 1/4, -1/4, 1/6, -1/6, 1/9, -1/9, 1/12, -1/12, 1/18, -1/18, 1/36, -1/36, -1/2, 1/2, -1/3, 1/3, -1/4, 1/4, -1/6, 1/6, -1/9, 1/9, -1/12, 1/12, -1/18, 1/18, -1/36, 1/36, 3/2, -3/2, 3/3, -3/3, 3/4, -3/4, 3/6, -3/6, 3/9, -3/9, 3/12, -3/12, 3/18, -3/18, 3/36, -3/36, -3/2, 3/2, -3/3, 3/3, -3/4, 3/4, -3/6, 3/6, -3/9, 3/9, -3/12, 3/12, -3/18, 3/18, -3/36, 3/36, 9/2, -9/2, 9/3, -9/3, 9/4, -9/4, 9/6, -9/6, 9/9, -9/9, 9/12, -9/12, 9/18, -9/18, 9/36, -9/36, -9/2, 9/2, -9/3, 9/3, -9/4, 9/4, -9/6, 9/6, -9/9, 9/9, -9/12, 9/12, -9/18, 9/18, -9/36, 9/36 }

1/2

x

1/2

36*x^3-55*x-9 = -32

1/2

-1/2

x

-1/2

36*x^3-55*x-9 = 14

-1/2

1/3

x

1/3

36*x^3-55*x-9 = -26

1/3

-1/3

x

-1/3

36*x^3-55*x-9 = 8

-1/3

1/4

x

1/4

36*x^3-55*x-9 = -22.1875

1/4

-1/4

x

-1/4

36*x^3-55*x-9 = 4.1875

-1/4

1/6

x

1/6

36*x^3-55*x-9 = -18

1/6

-1/6

x

-1/6

36*x^3-55*x-9 = 0

-1/6

x+1/6

36*x^2-6*x-54

36*x^3-55*x-9

x+1/6

-36*x^3-6*x^2

-6*x^2-55*x-9

6*x^2+x

-54*x-9

54*x+9

0

36*x^2-6*x-54 = 0

DELTA = (-6)^2-(-54*4*36)

DELTA = 7812

DELTA > 0

x = (7812^(1/2)+6)/(2*36) or x = (6-7812^(1/2))/(2*36)

x = (6*217^(1/2)+6)/72 or x = (6-6*217^(1/2))/72

x in { (6-6*217^(1/2))/72, (6*217^(1/2)+6)/72, -1/6}

2*(x-((6-6*217^(1/2))/72))*(x-((6*217^(1/2)+6)/72))*(x+1/6) = 0

(2*(x-((6-6*217^(1/2))/72))*(x-((6*217^(1/2)+6)/72))*(x+1/6))/(12*x+2) = 0

( x+1/6 )

x+1/6 = 0 // - 1/6

x = -1/6

( x-((6*217^(1/2)+6)/72) )

x-((6*217^(1/2)+6)/72) = 0 // + (6*217^(1/2)+6)/72

x = (6*217^(1/2)+6)/72

( x-((6-6*217^(1/2))/72) )

x-((6-6*217^(1/2))/72) = 0 // + (6-6*217^(1/2))/72

x = (6-6*217^(1/2))/72

x in { -1/6}

x in { (6*217^(1/2)+6)/72, (6-6*217^(1/2))/72 }

See similar equations:

| 4x^2=99 | | 2(z-10)+3z=10 | | n+8=72/9 | | 8a^2-26ab+15b^2= | | X^2+14x+38/x+8 | | 5/7b=35 | | 4x+5x=-31-8x | | log(x^2-600)=3 | | 3-15=z/-5 | | log(x^2-71)=1 | | 3/0.5 | | 5a^2(3a^3+15)= | | 8-9x=38-23x | | 1/2(2*3.14*8)17+200.96 | | 2.4/0.8 | | 8-9x=385-23x | | f+f+f+f+f=2f+36 | | d+26+d=4d | | 5x(x^2+4x-9)= | | 3h^2+17h-10=0 | | 0=150x+27.6-6x | | 6x+49=9x+14 | | 6(9-10)/6-2 | | (-4.4x^2)(7x^5)= | | 2x^3*2x^7= | | 7x^2-8x-2=0 | | 1/3-10=-6 | | 2(4x-1)=46 | | (a^2)^7/(a^3)^8 | | xsquared-3x+1=6 | | (3x-2)(2x+3)=0 | | (3x-2)(2x-3)=0 |

Equations solver categories